INTRODUCTION

In numerous animal organs, the control of cell growth (increase in size) and proliferation (increase in number) is separated, a mechanism that is thought to ensure correct organ and organismal size (1–3). Signaling by mammalian (or mechanistic) target of rapamycin (mTOR) complex 1 (mTORC1) is central to these processes because mTORC1 inhibitors reduce both the growth and proliferation of most cells in response to multiple extracellular signals (4). Two canonical mTORC1 substrates are the S6 kinases (S6K1 and S6K2) and the eukaryotic initiation factor 4E (eIF4E)–binding proteins (4E-BPs) (4E-BP1, 4E-BP2, and 4E-BP3) (5–7). mTORC1 activates S6Ks to promote biosynthetic pathways that are important for cell growth (7, 8). The mTORC1-mediated phosphorylation of 4E-BPs disrupts their inhibitory interaction with eIF4E, thus enabling efficient cap-dependent translation of mRNAs encoding cell cycle regulators (8, 9). Through these mechanisms, S6Ks promote cell growth, whereas the 4E-BP–eIF4E axis controls proliferation in a largely independent fashion in fibroblasts and other cell types (2, 3). However, the roles of S6Ks and 4E-BPs in immunosuppression by rapamycin have not been defined.

Lymphocyte blastogenesis is a unique process in which cells increase substantially in size during an extended growth phase in preparation for the multiple rapid cell divisions required for clonal expansion. It has been proposed that cells, such as lymphocytes, that undergo clonal expansion may couple cell growth and proliferation through a common control mechanism (10). Deletion of the integral mTORC1 subunit raptor in T or B cells profoundly blocks growth and proliferation (11, 12), establishing that mTORC1 is essential for blastogenesis. Furthermore, rapamycin-treated T cells enter cell cycle with a long delay, which correlates with slower size increase (13); however, it is not known whether distinct mTORC1 effector arms control lymphocyte growth and proliferation as in other cell types.

Two classes of mTOR inhibitors have been used to investigate the cellular functions of mTORC1. The natural product rapamycin is an allosteric mTORC1 inhibitor that reduces the phosphorylation of mTORC1 substrates to varying degrees. For example, rapamycin suppresses the phosphorylation of S6K1 (at Thr389) more completely than that of 4E-BP1 (Thr37/46) (14, 15). In contrast, synthetic adenosine triphosphate–competitive mTOR kinase inhibitors (TOR-KIs) fully block the phosphorylation of mTOR substrates (16, 17). The partial inhibition of 4E-BP1 phosphorylation by rapamycin results in a weaker antiproliferative effect than that of TOR-KIs in fibroblasts and cancer cells despite both inhibitors having equivalent effects on cell size (16–18). In contrast, rapamycin profoundly inhibits the proliferation of primary T and B cells to a similar extent as do the TOR-KIs (11, 18). Identifying the key rapamycin-sensitive effectors of mTORC1 should shed light on the long-standing question of why this immunosuppressive drug has selective potency in lymphocytes (19). Furthermore, determining the mechanisms that regulate lymphocyte activation downstream of mTORC1 might reveal novel targets for immunosuppression. Here, we genetically dissected the function of S6Ks and the 4E-BP–eIF4E axis in primary T and B cells. We found that lymphocytes coordinate growth and proliferation through the 4E-BP–eIF4E effector arm of mTORC1 in a rapamycin-sensitive manner.

RESULTS

S6K activity is dispensable for lymphocyte growth and proliferation

Lymphocyte-specific deletion of mTOR or raptor greatly impairs growth and proliferation in response to antigen receptor engagement (11, 12, 20, 21); however, the roles of mTORC1 substrates in lymphocyte blastogenesis have not been defined. The ability of rapamycin to suppress both growth and proliferation to a similar extent as that of the TOR-KIs in lymphocytes (Fig. 1) (11, 18) implies that the relevant substrates are rapamycin-sensitive. We tested the hypothesis that lymphocyte growth and proliferation are coupled through a single mTORC1 effector.

www.SCIENCESIGNALING.org 31 May 2016 Vol 9 Issue 430 ra57 1
RESEARCH ARTICLE

We focused initially on S6Ks, which have a conserved role in controlling cell size (3, 22, 23) and are important for proliferation in certain cell types (24). Phosphorylation of S6K or its substrate ribosomal protein S6 is commonly used as a rapamycin-sensitive readout of mTORC1 activity, and we found that both processes were completely blocked by rapamycin in lymphocytes and other cell types (Fig. 1). In addition, differences in cell size among activated T cells correlate closely with the mTORC1-dependent phosphorylation of S6 in individual cells (25). Although inhibition of S6K has been proposed as a key mechanism by which rapamycin inhibits the entry of lymphocytes into the S phase of the cell cycle (26), there has been no evidence to support the idea that S6K inactivation in primary lymphocytes affects growth or proliferation. Lymphocytes express both S6K1 and S6K2, and single-knockout mice of either S6K do not have obvious immune defects (22, 27). Mice lacking both S6K1 and S6K2 have a perinatal lethal phenotype with incomplete penetrance (27). Thus, we were able to obtain splenocytes from a limited number of surviving adult mice.

We measured the signaling, growth, and proliferation of S6K1/2 double-knockout (S6K DKO) lymphocytes after antigen receptor engagement. As expected, phosphorylated ribosomal protein S6 (pS6) at Ser240/244, the measurement of which is a sensitive read-out of S6K activity, was completely absent in activated S6K DKO T and B cells (Fig. 2A). However, both T and B cells from S6K DKO mice exhibited no substantial defect in their ability to grow or proliferate (Fig. 2, B and C). Furthermore, both the growth and proliferation of S6K DKO lymphocytes were still sensitive to rapamycin, indicating that lymphocyte growth and proliferation depend on other mTORC1 outputs. To address the possibility that S6K DKO lymphocytes had compensatory changes, we used a chemical genetic approach (fig. S1) in which S6K2-deficient (S6K2 KO) lymphocytes, which developed normally (fig. S1A), were treated with the highly selective S6K1 inhibitor LY2584702 (28) to completely suppress S6K activity (fig. S1B). Equivalent results were obtained from this approach (fig. S1C) and from experiments in which an S6K1 hypomorphic mouse model was crossed with S6K2 KO mice (fig. S2). We also assessed proliferation in an antigen-specific system with total splenocytes stimulated in vitro with the superantigen staphylococcal enterotoxin B (SEB), which activates all T cells bearing Vβ8 chain (fig. S1D). Again, S6K DKO T cells proliferated normally and were rapamycin-sensitive.

The relevant mTORC1 effector is a kinase substrate

Two models could explain how rapamycin suppresses lymphocyte function independently of S6K inactivation: (i) by disrupting a noncatalytic...
Fig. 2. S6Ks are dispensable for lymphocyte growth and proliferation. (A) CD4+ T cells (left) and B cells (right) from WT or S6K1/2−/− (DKO) mice were left unstimulated (Media) or were stimulated for 24 hours with anti-CD3 and anti-CD28 antibodies (for T cells) or with anti-IgM antibody and IL-4 (for B cells) in the presence or absence of 20 nM rapamycin. The cells were then analyzed by flow cytometry to detect pS6 (Ser240/244). Red numbers inside the plots indicate the percentage of pS6-positive cells. Data are representative of two experiments. (B) Cell growth at 24 hours was measured by flow cytometric analysis of FSC. Data are representative of two experiments. (C) Cell proliferation at 72 hours after activation was measured by flow cytometric analysis of CFSE dilution. (D) Total splenocytes (left) or purified CD4+ T cells (right) from WT or S6K1−/− mice were labeled with CFSE and stimulated for 72 hours with anti-CD3 and anti-CD28 antibodies with or without the indicated concentration of PF-4708671 (PF). Cells were stained with anti-CD4, and proliferation was measured by flow cytometric analysis of CFSE dilution gating on CD4+ cells. All results are representative of two independent experiments. In addition to the comparisons of WT and S6K1/2−/− (DKO) mice in (A) to (C), equivalent results were observed in independent experiments using additional chemical and genetic approaches (figs. S1 and S2).

Lymphocytes have increased amounts of 4E-BP2, which is distinct from 4E-BP1 in its rapamycin sensitivity

The 4E-BP–eIF4E axis plays a central role in lymphomagenesis (32) and regulatory
Fig. 3. The relevant downstream mTORC1 effector in lymphocytes is a kinase substrate. (A) Top: Strategy to generate T cell– or B cell–specific mTOR-KI mice. mTORflox/KI mice have a D2338A mutation in the mTOR kinase domain. These mice were crossed with mTORflox/flox mice to generate mTORflox/KI. Mice were further crossed to either Cd4-Cre or Cd19-Cre mice to delete the floxed mTOR allele only in T cells (mTOR-TKI) or B cells (mTOR-BKI), respectively. Bottom: CD4+ T cells were purified from mTOR-TKI, Raptor-ΔT, and control mTORflox/flox mice. B cells were purified from mTOR-ΔB, mTOR-BKI, Raptor-ΔB, and control Cd19flox/flox mice. CD4+ T and B cells were stimulated for 24 hours as described earlier, and mTORC1 kinase activity was assessed by Western blotting analysis of p4E-BP1 (Thr36/45). (B) Red numbers in the plots indicate the percentages of pS6-positive cells. Data are means ± SEM of 3 to 11 experiments. *P < 0.05, **P < 0.01, ***P < 0.001, by repeated-measures ANOVA, measured versus the control genotype. (C) Cell growth at 24 hours (top) and cell proliferation (bottom) were measured by flow cytometric analysis of FSC of CD4+ T cells (left) and B cells (right) from the indicated mice, and the decrease in size compared to that of control (stimulated flox/flox) cells was measured for each experiment (far right) as described in Fig. 1B. mTOR-ΔT: mTOR knockout; Raptor-Δ: Raptor knockout. For B cell–specific genetic deletion experiments, Cd19-Cre heterozygotes were used as appropriate controls. (D) Groups of three to four mice of the indicated genotypes were injected with 100 μg of SEB intraperitoneally (i.p.). Twenty-four hours later, their spleens were harvested and the increase in the size of CD4+V8+ cells was determined by flow cytometric analysis of FSC (left). Early activation status at 24 hours after SEB injection was also measured by the cell surface marker CD69 on CD4+V8+ cells (middle). Cell proliferation at 48 hours after injection was measured by counting the total number of splenocytes and multiplying it by the percentage of CD4+V8+ cells in each sample (right). Results are representative of at least three independent experiments. FSC-H, forward scatter height. Where indicated, data are means ± SEM of 3 to 11 experiments. *P < 0.05, **P < 0.01, ***P < 0.001, by repeated-measures ANOVA, measured versus the control genotype.

T cell differentiation (33) through specific translation of mRNAs; however, little is known about its role in normal lymphocyte blastogenesis. 4E-BP proteins (4E-BP1, 4E-BP2, and 4E-BP3) are direct kinase substrates of mTORC1, which, when dephosphorylated, bind to eIF4E and displace the scaffolding protein eIF4G, thereby preventing the assembly of an active eIF4F translation initiation complex (9, 34). The phosphorylation of 4E-BP by mTORC1 on several residues triggers the release of 4E-BPs from eIF4E and promotes cap-dependent translation. Phosphorylation of the key residues Thr37 and Thr46 (collectively referred to as Thr37/46) on 4E-BP1 is reduced by rapamycin only weakly in most cell types (15–18), which may explain why modulation of 4E-BP-eIF4E activity has not been considered as a likely mechanism of action for rapamycin in lymphocytes.

We assessed the phosphorylation state of 4E-BP with a phosphospecific antibody that detects Thr37/46 (the sites on mouse and rat 4E-BP1 that correspond to human Thr37/46) as well as Thr37/46 on 4E-BP2 (Fig. 4).
Fig. 4. The phosphorylation of 4E-BP2 at Thr^{37/46} is rapamycin-sensitive. (A) Top: B cells isolated from WT, 4E-BP1 knockout (4E-BP1^{−/−}), and 4E-BP2 knockout (4E-BP2^{−/−}) mice were left unstimulated or were stimulated for 2 hours with anti-IgM antibody and IL-4 in the absence or presence of 20 nM rapamycin or 50 nM MLN0128. Samples were then analyzed by Western blotting with antibodies specific for the indicated proteins. Western blots are representative of two to six experiments. Bottom: Densitometric analysis of the intensities of the indicated bands normalized to that of the unstimulated condition. Data are means ± SEM of six independent experiments. Erk, extracellular signal–regulated kinase. (B) B cells from WT mice were left unstimulated or were stimulated as described earlier in the absence or presence of the indicated inhibitors. Cells were then analyzed by Western blotting with antibodies against the indicated proteins. Right: Densitometric analysis of the intensities of the bands corresponding to p4E-BP1 (S65) normalized to that of unstimulated condition. Data are means ± SEM of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001, by repeated-measures ANOVA, measured versus the vehicle-treated control.

This analysis confirmed that in activated B cells, the TOR-KI compound MLN0128, but not rapamycin, suppressed the phosphorylation of 4E-BP1 on Thr^{36/45} (Fig. 4A). Note that rapamycin reduced the phosphorylation of the 4E-BP2 isoform on the equivalent sites (Fig. 4A). Western blotting analysis of 4E-BP1 and 4E-BP2 singly deficient lymphocytes confirmed the phosphorylated band to be p4E-BP2 (Fig. 4A). Extensive analysis of the five conserved phosphorylation sites on mouse 4E-BP1 showed that Ser⁶⁵ (equivalent to Ser⁶⁴ in human 4E-BP1) contributes substantially to the SDS–polyacrylamide gel electrophoresis (PAGE) migration pattern of 4E-BP1 (35). To test whether the faster gel migration pattern of 4E-BP1 from rapamycin-treated B cells resulted from dephosphorylation of the Ser⁶⁵ site that is rapamycin-sensitive in T cells (36), as well as in human embryonic kidney (HEK) 293 cells and fibroblasts (15), we analyzed activated B cells by Western blotting with an antibody specific for 4E-BP1 phosphorylated on Ser⁶⁵. We observed equivalent effects of rapamycin and MLN0128 in inhibiting the phosphorylation of Ser⁶⁵ on 4E-BP1 (Fig. 4B), potentially explaining the shift in migration of the band corresponding to 4E-BP1 (Fig. 4A).

To check whether the differential sensitivity of 4E-BP2 was unique to primary lymphocytes, we used the diffuse large B cell lymphoma (DLBCL) cell line VAL, which had 4E-BP2 but not 4E-BP1 (Fig. 5A), as we reported previously (37). Intracellular staining showed that the phosphorylated 4E-BP2 (p4E-BP2) signal was sensitive to rapamycin in VAL cells (Fig. 5B). In OCI-Ly1 cells, a DLBCL cell line that has high amounts of 4E-BP1 (Fig. 5A), the p4E-BP signal was rapamycin-insensitive, but MLN0128-sensitive (Fig. 5B). These results suggest that the reported rapamycin resistance of 4E-BP phosphorylation at Thr^{37/46} applies more to 4E-BP1 than to 4E-BP2.

Analysis of sequence alignments revealed a conserved Gly³¹ of mouse 4E-BP1, a position that is filled by a polar amino acid residue (glutamine or histidine) in 4E-BP2 (Fig. S4A). Mutation of Gly³¹ to glutamine or histidine rendered Thr^{37/46} in 4E-BP1 more rapamycin-sensitive (fig. S4, B and C). In this experiment, we assessed 4E-BP1 phosphorylation status by mobility shift with an antibody against total 4E-BP1 because the affinity of the phosphospecific antibody for the protein might be altered by the amino acid substitutions.

We then assessed the abundances of the 4E-BP isoforms in primary resting lymphocytes. When compared with equal amounts of protein from mouse embryo fibroblasts (MEFs), the abundance of 4E-BP1 was substantially less in T and B lymphocytes (Fig. 5C). In contrast, lymphocytes had similar or greater amounts of 4E-BP2 compared to MEFs (Fig. 5C). Purified human T cells similarly showed low amounts of 4E-BP1 and high amounts of 4E-BP2 relative to those of MEFs (Fig. 5A). A database of mRNA abundances in cells of hematopoietic lineage also showed enrichment of eif4ebp2 in mature lymphocytes (fig. S5). Consistent with a higher ratio of 4E-BP2 protein to 4E-BP1 protein in B cells, intracellular staining for 4E-BP isoforms detected reduced phosphorylation in rapamycin–treated primary B cells, but not MEFs or OCI-Ly1 lymphoma cells (compare Fig. 5D with Fig. 5B).
Rapamycin disrupts eIF4F complex formation upon lymphocyte activation

The observation that rapamycin reduced the phosphorylation of 4E-BP2, which is abundant in lymphocytes, suggests that rapamycin should inhibit eIF4E function in activated lymphocytes. To test this, we assessed the interaction between eIF4G and eIF4E by 7-methylguanosine 5′-triphosphate (m7GTP) pulldown assays in lysates of B cells treated early on during activation with rapamycin. Rapamycin-treated samples showed a near-complete displacement of eIF4G from eIF4E, similar to the state in resting or MLN0128-treated B cells (Fig. 6A). In contrast, rapamycin caused little or no displacement of eIF4G from eIF4E in other cell types, including MEFs that were treated with inhibitors after serum starvation and then were restimulated with serum (fig. S6). Rapamycin and MLN0128 also had equivalent effects on protein synthesis in activated primary B cells, as detected by a puromycin incorporation assay (Fig. 6B). In MEFs, MLN0128, but not rapamycin, suppressed protein synthesis (Fig. 6C). This is consistent with MLN0128 having a greater inhibitory effect on MEF proliferation compared to that of rapamycin (fig. S7A), consistent with reported comparisons of other TOR-KIs with rapamycin (16, 17, 38).

One variable that might contribute to differential rapamycin sensitivity is the presence of distinct amounts of eIF4E in different cells. We reported previously that eIF4E abundance is low in resting human T cells compared to that in T lymphoma cells (39). Here, we found that the amount of eIF4E in mouse T and B cells was comparable to that in MEFs but less than that in B lymphoma cells (fig. S7B). To determine whether 4E-BPs were required for the ability of rapamycin to suppress proliferation in lymphocytes, we isolated B cells from 4E-BP1/2 DKO mice and found that they were partially resistant to the antiproliferative effects of TOR-KIs
Fig. 6. Rapamycin inhibits eIF4F formation and protein synthesis in lymphocytes. (A) Left: B cells from WT mice were left unstimulated or were stimulated for 2 hours with anti-IgM antibody and IL-4 in the absence or presence of the indicated inhibitors. The cells were then subjected to m7GTP cap pull-downs. The relative amounts of eIF4G, eIF4E, and 4E-BP1 that were bound to the cap were then measured by Western blot analysis. Bottom: Western blotting analysis of total cell lysate (input). Right: The amount of eIF4G normalized to the amount of eIF4E pulled down from cells under the indicated conditions was quantitated over five independent experiments. Horizontal lines represent the means of each group. *P < 0.05, by repeated-measures ANOVA, measured versus the unstimulated control. (B) Left: A puromycin incorporation assay was used to measure nascent protein synthesis in B cells that were treated as described in (A). Right: Puromycin incorporation signals for the indicated samples normalized to a loading control were quantitated for three experiments and were expressed as the percentage of protein synthesis detected. **P < 0.01, ***P < 0.001, by repeated-measures ANOVA, measured versus the stimulated, vehicle-treated control. CHX, cycloheximide. (C) MEFs from WT mice were left untreated or were treated for 3 hours with the indicated inhibitors before being subjected to puromycin incorporation assays as described in (B). Right: Puromycin incorporation signals for the indicated samples normalized to a loading control were quantitated for three experiments and were expressed as the percentage of protein synthesis detected. *P < 0.05, **P < 0.01, ***P < 0.001, by repeated-measures ANOVA, measured versus the vehicle-treated control.

Suppression of eIF4E function phenocopies the effects of mTORC1 inhibition

To address whether 4E-BPs were sufficient to mediate the effects of mTORC1 inhibition, we used transgenic mice that expressed a constitutively active mutant of 4E-BP1 (4E-BP1M), which could be expressed in a doxycycline-inducible manner (32). These mice were crossed to Rosa26rtTA (reverse tetracycline transactivator) transgenic mice, which display widespread expression of the rtTA protein. Upon incubation of purified lymphocytes with doxycycline for 6 hours, we observed substantial amounts of the 4E-BP1M protein, which is characterized by a higher molecular mass because of the FLAG-tag (fig. S8A). Furthermore, there was no perturbation in the phosphorylation of upstream regulators of mTORC1 (Akt) or of downstream effectors (S6) when 4E-BP1M was expressed, suggesting that 4E-BP1M induction does not perturb overall mTOR signaling during lymphocyte activation (fig. S8, B and C).

First, we assessed the effect of 4E-BP1M on the interaction between eIF4G and eIF4E using the m7GTP pulldown assay. Resting naïve lymphocytes showed minimal binding of eIF4G to eIF4E, which was instead bound to 4E-BP1 (Fig. 8A). In B cells activated for 2 hours, the prominent increase in the extent of the interaction between eIF4G and eIF4E was abolished in the presence of 4E-BP1M (Fig. 8A). When activated for 24 hours, the 4E-BP1M–expressing lymphocytes showed a substantial defect in
growth that correlated with the concentration of doxycycline that was added for 6 hours before the cells were activated (Fig. 8B). Note that 4E-BP1M expressing lymphocytes closely phenocopied the growth and proliferation defect seen in Raptor-KO lymphocytes (Fig. 8, B and C); however, the ectopic expression of 4E-BP1M blocked cellular growth and proliferation independently of mTORC1 status, whereas Raptor-KO lymphocytes also showed greatly reduced amounts of pS6 (Fig. 8C). The effects of 4E-BP1M expression were similar to those of pharmacological mTORC1 inhibition by rapamycin or MLN0128 (fig. S8D). Furthermore, an adoptive transfer experiment (diagrammed in fig. S9A) showed that 4E-BP1M expression blocked the SEB-stimulated growth and proliferation of T cells in vivo without inhibiting the appearance of an early activation marker (Fig. 8D and fig. S9B). These results demonstrate that specific blockade of the 4E-BP1M-4E-F4E signaling node downstream of mTORC1 is sufficient to block both lymphocyte growth and proliferation.

The effect of 4E-BP1M on cell growth was specific for primary T and B cells. In 3T3 fibroblasts and the OCI-Ly1 lymphoma cell line, induced expression of 4E-BP1M largely suppressed proliferation but not the size or protein content (fig. S10, A and B). These results are consistent with our previous observation that the 4E-BP1M-4E-F4E axis specifically regulates cell cycle, but not size, in fibroblasts (2). Thus, lymphocytes uniquely use the 4E-BP1M-4E-F4E axis to control both growth and proliferation.

DISCUSSION

The coordination of cell growth and proliferation in mammals is a fundamental question in biology (10, 40). The central role of mTOR in the growth and proliferation of mammalian cells has largely been attributed to its regulation of two distinct downstream effectors: S6ks and 4E-BPs (41, 42). Here, we showed that during primary lymphocyte activation, cell growth and proliferation are coordinated through mTORC1-dependent control of the 4E-BP-4E-F4E axis. Whereas inactivating S6ks had no effect, blocking 4E-F4E function with an inducible 4E-BP mutant was sufficient to abrogate lymphocyte growth and proliferation both in vitro and in vivo. Conversely, deleting endogenous 4E-BPs substantially reduced the antiproliferative effect of mTOR inhibition. The ability of rapamycin to selectively inhibit lymphocyte proliferation correlates with disruption of the 4E-F4E translation initiation complex.

It is surprising that despite there being a conserved role for S6ks in cell size regulation (3, 22, 23), these kinases were dispensable for T or B cell growth, as well as proliferation. The robust activation of S6ks downstream of antigen receptor signaling might be more important in other cell fate decisions, such as T helper cell differentiation (43, 44).

On the contrary, both gain-of-function and loss-of-function experiments support the conclusion that 4E-BPs are key mTORC1 effectors that control growth and proliferation in activated T and B cells. Through an inducible system, we showed that the expression of constitutively active 4E-BP1M (thus inhibiting 4E-F4E) was sufficient to block lymphocyte growth and proliferation. Conversely, deletion of 4E-BPs partially rescued B cells from the effects of mTOR inhibition. Notably, 4E-BP1/2 DKO B cells were only partially protected from the antiproliferative effects of rapamycin and TOR-KIs. The cells that did proliferate underwent only one round of division, which could be due to either a delay in entering the cell cycle or the abortive proliferation of committed cells. It is possible that 4E-BP1/2 DKO lymphocytes have a developmental compensation that increases their dependency on other mTORC1 substrates. The 4E-BP3 isoform might also compensate.

Our analysis of the mTORC1-4E-BP-4E-F4E axis in lymphocytes broadens our knowledge of the distinctions between 4E-BP isoforms. 4E-BP1 and 4E-BP2 have distinct expression patterns (45), and 4E-BP2 is enriched in the brain and regulates neuronal function (46); however, 4E-BP1 has been the main isoform studied in the context of mTOR inhibitors. Rapamycin is effective at blocking the mTORC1-mediated phosphorylation of Ser235 on 4E-BP1, but the Thr23/246 sites are rapamycin-resistant in most cell types studied to date (15, 47). Our data demonstrate that primary lymphocytes express relatively greater amounts of 4E-BP2 (at both the mRNA and protein levels) than of 4E-BP1 when compared to other cell types. In addition, the Thr23/246 sites on 4E-BP2 are more rapamycin-sensitive than the
homologous sites on 4E-BP1. This difference in rapamycin sensitivity is encoded in part by distinct amino acids at position −5 relative to the Thr37 site.

More than 15 years after rapamycin gained regulatory approval as an immunosuppressant, the mechanistic basis for its immune cell selectivity has remained elusive. Rapamycin is exquisitely selective for its target mTOR, a protein that is expressed ubiquitously. In contrast to its effects in lymphocytes, rapamycin delays, but does not block, cell cycle progression in fibroblasts and many cancer cell lines and has generally weaker cytostatic effects than do the TOR-KIs (16–18). Our data showed that in lymphocytes, unlike in other cell types, rapamycin was equally effective as TOR-KIs at disrupting the formation of the eIF4F complex and reducing protein synthesis. Displacement of eIF4G from eIF4E correlated with the increased abundance of eIF4E in V AL lymphoma cells could preserve eIF4G binding after treatment with rapamycin, despite the presence of dephosphorylated 4E-BP2. MEFs have relatively low amounts of eIF4E, similar to lymphocytes, but have barely detectable amounts of 4E-BP2. In summary, we propose that a high ratio of rapamycin-sensitive 4E-BP2 to eIF4E together with the coupling of growth and division through eIF4E can explain why rapamycin profoundly suppresses lymphocyte blastogenesis and clonal expansion (Fig. 8E). Consistent with this model, expression of 4E-BP1M-resistant primary lymphocytes particularly sensitive to rapamycin, which potently blocks the phosphorylation of 4E-BP2, an isoform that is highly abundant in these cells.

The proliferation of the indicated 4E-BP1M-expressing lymphocytes was compared with that of Raptor−/− lymphocytes, and mTORC1 activity was assessed by the flow cytometric measurement of pS6 abundance as described in Fig. 1A. Data are representative of three experiments. (D) Syngeneic C57/B6 host mice were fed doxycycline in their drinking water ad libitum for 24 hours. Purified CD4+ T cells from either control (R26-rtTA) or 4E-BP1M mice were labeled with eFluor 670 and injected intravenously into syngeneic host mice. After 24 hours, mice were injected intraperitoneally with 100 μg of SEB, and spleens were analyzed at 24 and 48 hours after injection to determine the size (left) and proliferation (right) of CD4+Vβ8+ cells. Data are means ± SEM of three mice each genotype. *P < 0.05, **P < 0.01, ***P < 0.001, by repeated-measures ANOVA, measured versus the media control. (E) Proposed model: Cell growth and proliferation are coupled through the 4E-BP–eIF4E pathway in primary lymphocytes, which distinguishes these cells from cells, such as fibroblasts, in which both processes are regulated in a largely independent manner by S6Ks and 4E-BP–eIF4E signaling. This coordination of cell growth and proliferation through a common 4E-BP–eIF4E node renders primary lymphocytes particularly sensitive to rapamycin, which potently blocks the phosphorylation of 4E-BP2, an isoform that is highly abundant in these cells.

Fig. 8. A constitutively active 4E-BP1 mutant is sufficient to phenocopy mTORC1 deficiency in lymphocytes. (A) CD4+ T and B cells from control (R26-rtTA) mice and 4E-BP1M-expressing mice were left untreated or were stimulated as described earlier for 12 hours and subjected to m7GTP cap pull-down. The relative amounts of eIF4G, eIF4E, and 4E-BP1 bound to the cap were measured by Western blotting. Data are representative of two experiments. (B) Top: The growth of the indicated 4E-BP1M-expressing lymphocytes was determined by flow cytometric analysis of FSC. Different color coding represents the different amounts of doxycycline (Dox) that were added for 6 hours before cell stimulation to induce 4E-BP1M expression. Bottom: The growth of 4E-BP1M-expressing lymphocytes was compared to that of Raptor−/− lymphocytes. Data are representative of three experiments. (C) The proliferation of the indicated 4E-BP1M-expressing lymphocytes was compared with that of Raptor−/− lymphocytes, and mTORC1 activity was assessed by the flow cytometric measurement of pS6 abundance as described in Fig. 1A. Data are representative of three experiments. (D) Syngeneic C57/B6 host mice were fed doxycycline in their drinking water ad libitum for 24 hours. Purified CD4+ T cells from either control (R26-rtTA) or 4E-BP1M mice were labeled with eFluor 670 and injected intravenously into syngeneic host mice. After 24 hours, mice were injected intraperitoneally with 100 μg of SEB, and spleens were analyzed at 24 and 48 hours after injection to determine the size (left) and proliferation (right) of CD4+Vβ8+ cells. Data are means ± SEM of three mice each genotype. *P < 0.05, **P < 0.01, ***P < 0.001, by repeated-measures ANOVA, measured versus the media control. (E) Proposed model: Cell growth and proliferation are coupled through the 4E-BP–eIF4E pathway in primary lymphocytes, which distinguishes these cells from cells, such as fibroblasts, in which both processes are regulated in a largely independent manner by S6Ks and 4E-BP–eIF4E signaling. This coordination of cell growth and proliferation through a common 4E-BP–eIF4E node renders primary lymphocytes particularly sensitive to rapamycin, which potently blocks the phosphorylation of 4E-BP2, an isoform that is highly abundant in these cells.
nonlymphoid cells, translation of specific mRNA subsets is sensitive to the activity and amount of eIF4E (49–51). Thus, it is likely that regulated translation of specific mRNAs is necessary for increased global translation. mRNAs encoding ribosomal proteins are sensitive to eIF4E activity in fibroblasts and to rapamycin in activated human T cells (13, 54). If ribosome number is limiting in resting lymphocytes, cap-dependent translation of those mRNAs encoding ribosomal proteins might be an essential eIF4E-dependent step to increase the capacity for global protein synthesis during the first phase of lymphocyte activation.

There is growing evidence that regulated mRNA translation modulates many aspects of immune function (52). For example, regulatory T cells have a distinct translational signature compared to that of conventional T cells (33). Modulation of the translational landscape by the mTORC1–eIF4E axis provides a previously unappreciated mechanism to drive blastogenesis (growth) and clonal expansion (proliferation) that is distinct from well-characterized transcriptome changes (52–54). eIF4E and regulated mRNA translation might play important roles in other mTORC1-dependent phenotypes in activated lymphocytes, such as metabolic reprogramming (55–57), T helper cell differentiation (12, 20, 58, 59), and effector and memory CD8+ T cell differentiation (60, 61). Thus, it will be of interest to study changes in the translational landscape upon lymphocyte activation, an understudied area in the field. In addition, identifying those mRNAs whose translation is eIF4E-dependent and rapamycin-sensitive in activated lymphocytes might lead to new targets for immunosuppression.

MATERIALS AND METHODS

Mouse strains and reagents

C57BL/6 mice were bred at the University of California, Irvine (UCI) and used when they were between 6 and 12 weeks of age. All animals were studied in compliance with protocols approved by the Institutional Animal Care and Use Committees of UCI. Raptor−/− mice on a C57BL6 background were obtained from The Jackson Laboratory (stock number 013138) and have been described previously (11). Mice harboring one allele encoding an mTOR-KI mutant were described previously (62) and were rederived at UCI after retrieving embryonic stem cells from Lexicon Genetics. These mice were backcrossed to the C57BL6 background at least 8 to 10 times during the course of this study. No apparent differences were seen in cellular assays from early mTOR−/− mice compared to later-stage mice upon multiple rounds of backcrossing to the C57BL6 background. Cd4-Cre mice (model number 4196) and Cd19-Cre mice (stock number 06785) were from Taconic and The Jackson Laboratory, respectively. The analog-sensitive kinase allele (ASKA) knock-in mouse for Rps6k1 (revenue ID: RDBMBFASKA0040) was developed by and purchased from either LC Laboratories or Cell Signaling Technology. The active-site mTORC1/2 inhibitor INK128 was purchased from either LC Laboratories or Cell Signaling Technology. Mice deficient in S6K2 (S6K2−/−) were a gift from S. Kozma [El Instituto de Investigación Biomédica de Bellvitge (IDIBELL), Spain]. 4E-BP1/2-deficient mice (4E-BP1/2 DKO) were described previously (2). Mice harboring a transgenic allele encoding a constitutively active form of 4E-BP1 (4E-BP1CA) under a tetracycline-responsive element were described previously (63). These mice were crossed to a strain harboring an optimized form of rTA (rTA-M2) inserted downstream of the Rosa26 promoter, which was purchased from The Jackson Laboratory (stock number 006965). The active-site mTORC1/2 inhibitor INK128 was purchased from Cayman Chemical. The mTOR allosteric inhibitor rapamycin was purchased from both LC Laboratories or Cell Signaling Technology.

Cell surface staining

Cells for immunophenotyping were isolated from either the spleen, lymph nodes, or thymus. Except for lymph nodes, red blood cells (RBCs) were lysed with ACK (ammonium-chloride-potassium) lysis buffer, and cells were resuspended in fluorescence-activated cell sorting (FACS) buffer (0.5% bovine serum albumin and 0.02% sodium azide in PBS) with Fc block (eBioscience) for 30 min on ice. Without the Fc block being removed, the cells were stained for surface markers with the following fluorophore-conjugated antibodies: CD3-FITC (fluorescein isothiocyanate), B220-APC (allophycocyanin), CD4-PE (phycoerythrin), CD69-PE, Vβ8-PE, or Vβ8-APC (all from eBioscience). Samples were stained for at least 30 min on ice before undergoing flow cytometric analysis.

Lymphocyte cell culture

B cells or CD4+ T cells were purified from murine splenocytes by negative selection with the MagniSort B cell or CD4+ T cell enrichment kit (eBioscience). For proliferation assays, purified cells were labeled with 2.5 μM CFSE (Life Technologies) in PBS for 5 min at room temperature and were washed once with lymphocyte culture medium [RPMI medium supplemented with 10% fetal bovine serum (FBS), penicillin-streptomycin (100 U/ml), 2 mM L-glutamine, 5 mM Heps buffer, and 50 μM 2-mercaptoethanol] before undergoing functional assays. CFSE-labeled B cells were activated with functional-grade anti-mouse IgM F(ab′)2 (10 μg/ml, eBioscience) with IL-4 (10 ng/ml, R&D Systems). CD4+ T cells were activated by plate-bound anti-CD3 antibody (2C11: 5 μg/ml) and plate-bound anti-CD28 antibody (2.5 μg/ml).

Cell growth measurement

The growth of activated B or CD4+ T cells at the times indicated in the figure legends was measured by the forward scatter parameter with a BD FACS Calibur flow cytometer.

Intracellular staining

For intracellular staining of lymphocytes, cells were fixed and permeabilized with BD cytotox/permperm solution at the times indicated in the figure legends. Cells were washed twice with wash buffer (0.1% Tween 20 in PBS) and stained with antibodies against the appropriate proteins in wash buffer for 1 hour. Cells were washed once in wash buffer before being analyzed by flow cytometry. For cells other than lymphocytes, cells were fixed with 2% paraformaldehyde for 15 min and permeabilized with ice-cold methanol. After washing with FACS buffer once, cells were stained with the appropriate antibodies for 1 hour in FACS buffer. Cells were subsequently stained with goat anti-rabbit secondary antibodies conjugated to different fluorophores for 30 min and washed once with FACS buffer before being analyzed. Alexa Fluor 647–conjugated antibody against pS6 (S240/244) (#5044) was from Cell Signaling Technology. An Alexa...
Fluor 647–conjugated donkey anti-rabbit IgG was from BioLegend. For two-step staining of intracellular proteins, primary antibodies used for Western blotting were used.

Western blotting

Cells were lysed in radioimmunoprecipitation assay buffer (Cell Signaling Technology) supplemented with complete protease inhibitor (Roche) and phosphatase inhibitor cocktail 2 and 3 (Sigma) for 30 min on ice with occasional mixing by vortex. Lysates were cleared by centrifugation at 4°C at maximum speed for 15 min. Protein amount was quantified with the Bradford assay (Bio-Rad), and equal amounts of protein were loaded on 8, 12, or 4 to 15% TGX precast gels (Bio-Rad) for SDS-PAGE. Proteins were transferred onto nitrocellulose membranes with a tank blotting system (Bio-Rad) and incubated with antibodies specific for the following proteins of interest: pS6 (S240/244) (#4858), p4E-BP1 (T37/46) (#2855), p4E-BP1 (S65) (#9456), 4E-BP1 (#9644), 4E-BP2 (#2845), eIF4G (#2469), Akt (#4691), pAkt (S473) (#4060), and mTOR (#2983) (all from Cell Signaling Technology). Antibody against eIF4E (#610269) was from BD Transduction Laboratories, anti-puromycin antibody (clone 12D10) was from Millipore, and antibody against β-actin was from Sigma.

Puromycin incorporation (SUnSET) assay

Puromycin was added to cultured cells (at a final concentration of 10 μg/mL), and the cells were pulsed for 10 min. Cells treated with cycloheximide (100 μg/mL) served as a positive control, whereas cells that were not exposed to puromycin served as a negative control in all experiments. Cells were harvested and subjected to Western blotting analysis. Puromycin incorporation (a measure of nascent protein synthesis) was assessed with an absolute incorporation assay of puromycin (SUnSET) assay

m7GTP cap assay

Cells were lysed in buffer A [1% NP-40, 10 mM tris-HCl (pH 7.6), 140 mM KCl, 4 mM MgCl2, 1 mM dithiothreitol, 1 mM EDTA, complete protease inhibitor, and phosphatase inhibitor cocktail], and lysates were incubated with 30 μl of the mRNA cap analog m7GTP-agarose beads (Jena Bioscience) in buffer A (with 0.5% NP-40) under constant and gentle agitation for 1 hour at room temperature. Samples with beads were washed three times with buffer A (with 0.5% NP-40), and the eIF4E-associated complex was resolved by SDS-PAGE and analyzed by Western blotting.

Activation of lymphocytes with SEB

To activate T cells with SEB in vitro, total splenocytes depleted of RBCs were labeled with 2.5 μM CFSE before the addition of SEB (200 ng/mL). After 96 hours, the cells were stained with anti-CD4 antibody to specifically gate on CD4+ T cells to analyze their proliferation. For in vivo T cell activation, mice (n = 3 for each group) were injected with 100 μg of SEB intraperitoneally, and cells were analyzed 24 and 48 hours later. For analysis, total splenocytes depleted of RBCs were stained with antibodies against the surface markers CD4, CD69, and Vβ8 to gate on the CD4+ Vβ8+ population for growth, proliferation, and activation analysis by flow cytometry. At 48 hours after injection, total splenocytes were counted and back-calculated to the flow cytometric frequency of CD4+ Vβ8+ T cells for absolute cell counts. Adoptive transfer experiments were performed by first isolating CD4+ T cells from either wild-type or e4BP1+/- donor mice. Purified CD4+ T cells were labeled with 2.5 μM eFluor 670 (eBioscience), a dye that tracks cell division, and were injected into wild-type mice intravenously. For 24 hours, these mice were injected with 100 μg of SEB, and the growth and proliferation of their CD4+ Vβ8+ T cells were analyzed at 24 and 48 hours, respectively. A portion of the cells was also analyzed by flow cytometry to assess the cell surface expression of CD69.

Sequence alignment

The ClustalW2 software provided by the European Molecular Biology Laboratory–European Bioinformatics Institute (www.ebi.ac.uk) was used to align the sequences for eif4ebp1 and eif4ebp2 across different species. The accession number for each species used is provided in Table S1.

Gene expression profiling

The absolute expression profile of eif4ebp1 and eif4ebp2 was extracted from the Stanford Gene Expression Commons Web site (https://gexc.stanford.edu).

62. B. Shor, D. Cavender, C. Harris, A kinase-dead knock-in mutation in mTOR leads to early embryonic lethality and is dispensable for the immune system in heterozygous mice. *BMC Immunol.* 10, 28 (2009).

Acknowledgments: We thank S. Kozma (IDIBELL, Spain) for the S6K2 knockout mice; D. Plas (University of Cincinnati) for spleen cells from S6K1 knockout mice; and M. Inlay, S. Lee, B. Lin, and J. Cruz for helpful contributions. **Funding:** This work was supported by NIH grants R21-AI099656 and R01-CA158383 (to D.A.F.), T32-AI060573 (to L.S.), and R01-CA184624 and R01-CA154916 (to D.R.) and by the Canadian Cancer Society Research Institute (to N.S.). This work was partially supported by NIH grant UL1 TR001414 from the National Center for Advancing Translational Sciences through the Biostatistics, Epidemiology, and Research Design Unit. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. D.R. is a Leukemia and Lymphoma Society Scholar. N.S. is a Howard Hughes Medical Institute Senior International Research Scholar. **Author contributions:** L.S. designed and conducted the experiments and wrote the manuscript; J.L., M.P., S.M., and C.G.W. designed and conducted the experiments; M.A. and M.L.T. provided the materials and advice; and N.S., D.R., and D.A.F. designed the experiments and wrote the manuscript. **Competing interests:** D.R. is a shareholder of eFFECTOR Therapeutics Inc. and a member of its scientific advisory board. The other authors declare that they have no competing interests. **Data and materials availability:** The following mouse strains were obtained under material transfer agreements: S6K2 knockout (Friedrich Miescher Institute, Basel, Switzerland); mTOR kinase-inactive heterozygous mice (Lexicon Genetics); Rps6kb1-ASKA kinase-switch (Taconic).

Submitted 10 November 2015
Accepted 12 May 2016
Final Publication 31 May 2016
10.1126/scisignal.aad8463

The 4E-BP–eIF4E axis promotes rapamycin-sensitive growth and proliferation in lymphocytes

Lomon So, Jongdae Lee, Miguel Palafox, Sharmila Mallya, Chaz G. Woxland, Meztli Arguello, Morgan L. Truitt, Nahum Sonenberg, Davide Ruggero and David A. Fruman

Sci. Signal. 9 (430), ra57.
DOI: 10.1126/scisignal.aad8463

4E-BP, the key to lymphocyte sensitivity

In most cells, the mammalian (mechanistic) target of rapamycin complex 1 (mTORC1) regulates cell growth through the ribosomal S6 kinases (S6Ks) and cell proliferation through translation-regulating proteins of the eIF4E-binding protein (4E-BP) family, respectively. Although mTORC1 is present in all cells, the mTORC1 inhibitor rapamycin is an effective immunosuppressant that blocks lymphocyte proliferation (see the Focus by Abraham). But, why are lymphocytes so exquisitely sensitive? So et al. found that lymphocytes did not depend on S6K signaling to promote growth or proliferation in response to antigen receptor stimulation. Instead, these cells relied on 4E-BP proteins for both processes. Unlike in nonlymphoid cells, the 4E-BP2 isoform was more abundant than the 4E-BP1 isoform in lymphocytes, and its phosphorylation by mTORC1 was more sensitive to rapamycin. These data suggest that the exquisite sensitivity of lymphocytes to rapamycin may be due to their complete reliance on 4E-BP2 for both growth and proliferation.